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Aromatic azides are widely used in industry as photorésists
and in biochemistry as photoaffinity labeling reagehtEheir
photochemistry has been called “wonderfully complex” but has
recently been unraveled.
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Photolysis of phenylazidel) releases singlet phenylnitrene 000 \M‘_‘ ek
(29 which in solution phasel(> 165 K) rapidly rearranges to B e
1,2-azacycloheptatetraeB8 At temperatures below165 K, Wavelength/nm
2S preferentially relaxes to triplet phenylnitre@d instead*> Figure 1. Transient spectrum observed (top) immediately following
the laser pulse and (bottom) 150 ns later. The sample was phenyl azide
. ) N 1in pentane at 233 K using 266 nm, 10 mJ, 150 ps/pulse excitation.
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In 1984 we assumétithat ring expansion dShad a normal g ol LWL 8 oos g b iV
pre-exponential factor of 814 s71 and that intersystem g - £ - ,M” iy
crossing (ISC) oRShad zero activation energf{) and a rate g °% 0 agonm | 8 | ]  400pm
similar to that of aryl carbenes (30°s71).8 On this basis it 0.00 R
was possible to deduce tHat for rearrangement was-24 kcal/ o T o aw o I 20

mol and that the lifetime o2Swas 16-100 ps at 298 KaIn
subsequent years triplet phenyl nitretleand cyclic ketenimine
3 were thoroughly characterized by matrix BVis and IR
spectroscopy,and 3 was studied in solution by time resolved
UV—vis and IR technique¥.

Figure 2. The variation in optical density as a function of time, at
different wavelengths, following excitation (266 nm) of phenyl azide
at 225 K.
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Figure 3. Temperature dependence of the rate constant of the
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Singlet phenylnitren@S is known to react with an external
trap, the protort* Indeed, HSO, shortens the lifetime 02S
in acetonitrile at 243 K. However, we cannot obtain the absolute
rate constant of this process because of the very short lifetime
of 2S in acetonitrile and the overlapping absorption of the
reaction product, phenylnitrenium icg*

The assignment of the 350 nm transient to singlet nit&$ie
is further supported by the Arrhenius parameters and the position
of the absorption band itself. The Arrhenius parameters
correctly model the known temperature dependence of the
photochemistry of phenylazidé. Previous work demonstrated
that the rate of ISCAS— 2T) becomes equal to that of nitrene
rearrangement at 165 K. The deduced rate of rearrangement,

rearrangement of singlet phenylnitrene in pentane. Fitting for the data o 5 + 1(p s%, at 165 K is comparable to the temperature

below @ yields kops = 1013804 exp (—(6200+£ 400)RT). The decay

is measured over a temperature range in which rearrangement is thesf

only significant decay route of singlet nitre2&*

associated with Arrhenius parametérs= 1013410571 andE,
6 + 1 kcal/mol. The transient signal observed with

phenylisocyanate is weaker than that obtained from phenylazide,
hence the experimental error in the Arrhenius parameters is
somewhat larger. There is no doubt, however, that the same
species is formed from both precursors. Thus, the 350 nm
absorbing transient cannot be an excited state of the precurso

but is instead a reactive intermediate which is attributed to
singlet phenylnitren@2S. Nitrene2Sis expected to be in its

lowest electronic state because it is unlikely that an excited state

of this species will have a lifetime of many ns in solution and
must overcome an enthalpic barrier to relax.

This spectroscopic assignment follows closely on our work
with perfluorinated singlet nitreneta,b.12
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Fluorination is known to lengthen the lifetime of singlet aryl
nitrenes which allows their facile capture with a variety of
reagentd3 Trapping with pyridine produces isolable ylidgs,b
which have intense absorptions near 3900 nm. Thus, in

independent rate of ISC determined #ab (2.2 x 106—10’
11215 Fyrthermore, the Arrhenius parameters predict that
the lifetime of 2Sin pentane at 298 K will be 0:11.0 ns in
good agreement with the findings of Wirz et&t® and of
theory?

Finally, we note that dmax 0f 350 nm of2Sis unsurprising
for several reasons. Singlet phenylnitrene is predidietiave
an open shell configuration as does the corresponding triplet.
Thus, these two species should have comparable electronic

spectra. Indeed, this is the case with b2 both of which

absorb near 350 nm. The spectrum of triplet phenylnitZhe
has been analyz&d2° In the UV region between 300 and 400
nm triplet phenyl nitrene has several 7* transitions related
to those of anilino radicat?® but has, in addition, a characteristic
transition on nitrogen in which an electron is promoted from
the nonbonding doubly occupied sp orbital into a singly
occupied p orbital of the nitrene nitrogen. This transition is
related to the well-known degeneraté H;—X3 =~ transition

of 3NH at 336 nm and the spectra of triplet methylnitrehe
and triplet 1-norbornylnitren® which havelnax values of 315
and 298 nm, respectivef}:24
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Additional studies of the rearrangement of various substituted
singlet aryl nitrenes are in progress and will be reported in due
course.
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